INTRODUCTION TO DATA-CENTRIC AI

Lecture 3 - Dataset Creation and Curation

https://dcai.csail.mit.edu

After looking through the entire dataset, we have:

$$C_{\tilde{y},y^*}$$
 $y^* = dog$ $y^* = fox$ $y^* = cow$ $\tilde{y} = dog$ 1004020 $\tilde{y} = fox$ 56600 $\tilde{y} = cow$ 321280

From $C_{\tilde{y},y^*}$ we obtain the joint distribution of label noise

$$\hat{p}(\tilde{y}, y^{*}) \begin{array}{l} y^{*} = dog \\ \tilde{y} = dog \end{array} \begin{array}{l} y^{*} = fox \\ \tilde{y} = dog \end{array} \begin{array}{l} 0.25 \\ 0.1 \\ 0.15 \end{array} \begin{array}{l} 0.05 \\ 0 \\ 0 \\ \tilde{y} = fox \end{array} \begin{array}{l} 0.14 \\ 0.15 \\ 0 \\ 0 \\ 0.03 \end{array} \begin{array}{l} 0.2 \end{array}$$

Dataset Curation: ImageNet Train Set

The largest off-diagonals of $C(\tilde{y}, y^*)$ reveal ontological issues.

Note the (is a) and (has a) relationships

Does this also work for val/test sets?

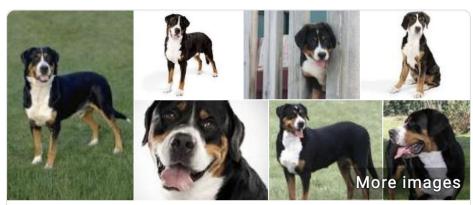
Lecture 2 -	Label	Errors
-------------	-------	--------

.

Dataset Curation: ImageNet Val Set

26	n02979186 cassette_player n04392985 tape_player
23	n03773504 missile n04008634 projectile
23	n03642806 laptop n03832673 notebook
23	n02808440 bathtub n04493381 tub
23	n13133613 ear n12144580 corn
22	n03710721 maillot n03710637 maillot
22	n01682714 American_chameleon n01693334 green_lizard
21	n02895154 breastplate n03146219 cuirass
20	n02412080 ram n02415577 bighorn
19	n04008634 projectile n03773504 missile
18	n01753488 horned_viper n01756291 sidewinder
18	n02107908 Appenzeller n02107574 Greater_Swiss_Mountain_dog
18	n12144580 corn n13133613 ear
17	n03146219 cuirass n02895154 breastplate
17	n02113624 toy_poodle n02113712 miniature_poodle
16	n03710637 maillot n03710721 maillot

There are indistinguishable examples in these classes



Appenzeller Sennenhund

<

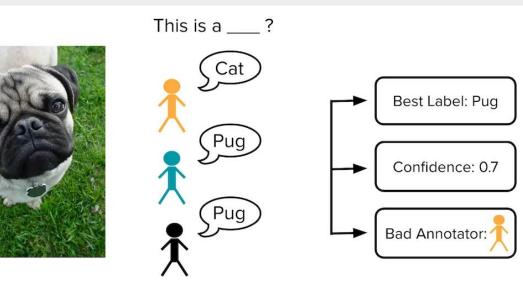
Dog breed

The Appenzeller Sennenhund is a medium-size breed of dog, one of the four regional breeds of Sennenhund-type dogs from the Swiss Alps. The name Sennenhund refers to people called Senn, herders in the Appenzell region of Switzerland. Wikipedia

Greater Swiss Mountain Dog

Dog breed

The Greater Swiss Mountain Dog is a dog breed which was developed in the Swiss Alps. The name Sennenhund refers to people called Senn or Senner, dairymen and herders in the Swiss Alps. Wikipedia



Lecture 2 - Label Errors

Introduction to Data-centric AI

Rest of Lecture

- Concerns when sourcing the data
 - \circ selection bias
 - \circ confounding
 - o distribution shift
- Concerns when sourcing the labels
 - how to work with multiple data annotators and assess quality

Good Textbook: Human-in-the-loop Machine Learning by R. Munro, R. Monarch

Key questions when sourcing training data

- 1. How will the resulting ML model be used?
 - On what population will model be making predictions and when

- 2. Hypothetical edge cases where we need model to make the right prediction?
 - High stakes scenarios, rare events

Trained image classifier predicts the left image contains a cow, but this model fails to make same prediction for the right image

Beery et al. 2018

This slide intentionally left blank