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Lecture 3 - Dataset CurationData-centric Evaluation of ML Models
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Topics of this lecture

● Evaluation of ML models (a prerequisite for improving them)

● Handling poor model performance for some particular subpopulation

● Measuring the influence of individual datapoints on the model
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Evaluation of ML models

Loss function evaluates model predictions for a new example vs its given label

Loss may be function of:

      Examples of such classification losses: accuracy, balanced accuracy, precision, recall, …

       Examples of such classification losses include: log loss, AUROC, calibration error,…
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Reporting Model Performance
● Not ideal to rely on a single score to summarize how good your model is overall

○ But what everybody does 

● Typical score = average of                           over many examples held-out during training 

● Alternatives: 
○ Average Loss for examples from each class separately (eg. per-class accuracy) 

○ Report complete confusion matrix
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Common pitfalls when evaluating models
● Failing to use truly held-out data 

(data leakage)

● Reporting only average loss can 
under-represent severe failure cases 
for rare examples/subpopulations 
(misspecified metric)

● Validation data not representative of 
deployment setting  (selection bias)

● Some labels incorrect 
(annotation error)
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Common pitfalls when evaluating models
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Aside: Evaluating Text Generation models

● Human Eval:  👍 vs 👎 (or Likert scale 1-5)
○ ‘vibes’

● AI (LLM) Eval: 👍 vs 👎 (or Likert scale 1-5)
○ Can give evaluator multiple binary criteria to assess

● Text similarity with target response 
(word overlap, ROUGE, BLEU)

● LLM likelihood of target response: Perplexity

Challenge: Eval data seen during pre-training? 
(data leakage)
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Underperforming Subpopulations

data slice = a subset of the dataset that shares a common characteristic

● cohorts, subpopulation, or subgroup

Examples:

● data captured via: one sensor vs another, one location vs another
● factors in human-centric data like: 

○ race, gender, socioeconomics, age, … 

Model predictions should not depend on which slice a datapoint belongs to 

● Can we just deleting slice information from our feature values before model training?
NO slice information can be correlated with other feature values still being used as predictors
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Improve model performance for a particular slice

1. Try a more flexible ML model that has higher fitting capacity

  

Linear Model Neural Net ModelBinary classification
Dataset (red v blue) 

Slice
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Improve model performance for a particular slice

2. Over-sample (up-weight) examples from minority subgroup
    that is receiving poor predictions
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Improve model performance for a particular slice

3. Collect additional data from the subgroup with poor performance

To see if this has promise: 

● Re-fit model to many versions of dataset with this subgroup 
down-subsampled to varying degrees 

● Extrapolate the resulting model performance (overall and for subgroup) 
expected if you had more data from this subgroup
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Improve model performance for a particular slice

4. Measure or engineer extra features that allow model to perform better for slice

Example: Classifying if customer will purchase some product or not, based on 
customer & product features

● Predictions for young customers may be worse (less available history)

● Could add an extra feature to the dataset such as: 
“Popularity of this product among young customers”
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Discovering underperforming subpopulations

1. Sort examples in the validation data by their loss value, and look at the 
examples with high loss for which your model is making the worst predictions 
(Error Analysis)

2. Apply clustering to these examples with high loss to uncover clusters that 
share common themes amongst these examples
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Discovering underperforming subpopulations
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Why did my model get a particular prediction wrong?

1. Given label is incorrect (and our model actually made the right prediction)

Recommended action:  Correct the label 

2. Example does not belong to any of the K classes 
(or is fundamentally not predictable, e.g. a blurry image)

Recommended actions:
- Toss this example from dataset
- Consider adding an “Other” class if many such examples
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Why did my model get a particular prediction wrong?

3. Example is an outlier 
(no similar examples in the training data)

Recommended Actions:

- Toss example if similar examples would never be seen in deployment.
- Otherwise collect additional training data that looks similar if you can.
- Otherwise apply data transformation to make outliers’ features more similar to 

other examples (eg. normalization of numeric feature, deleting a feature).
- Can add synthetic data (Data Augmentation) so model becomes invariant to 

difference that makes this outlier stand out from other examples.
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Why did my model get a particular prediction wrong?

3. Example is an outlier 
(no similar examples in the training data)

Recommended action if this example is important:

- Up-weight it or duplicate it multiple times
(perhaps with slight variants of its feature values)
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Why did my model get a particular prediction wrong?

4. Type of model you’re using is suboptimal for such examples

To diagnose: 

● up-weight similar examples or duplicate them many times in dataset
● retrain model
● see if new model can classify this example correctly

Recommended Actions (model-centric > data-centric in this case): 

● fit different types of models
● hyperparameter tuning
● feature engineering
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Why did my model get a particular prediction wrong?

5.  Dataset has other examples with (nearly) identical features but different label

Recommended Actions:

● Define classes more distinctly

● Measure extra features 
  to enrich the data
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Influence of individual datapoints on the model
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Leave-one-out Influence (LOO) 

How would model change if retrained after omitting datapoint (x, y) from dataset?

Trained Model has 98.5% validation accuracy Trained Model has 98.3% validation accuracy

Impact = 0.2%
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Data Shapely

Compute LOO influence of datapoint (x, y) in a subset of the dataset that contains 
(x, y). Then average these values over all such possible subsets.

Example: Suppose there are two identical datapoints in dataset and omitting both 
severely harms model accuracy but omitting one does not.

LOO Influence: neither datapoint is too influential 

Data Shapely: both are fairly influential
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Closed-form Computation of Influence

Can be done in regression (mean-squared-error loss) with linear regression model

- Called Cook’s Distance

Can be done for K-Nearest Neighbors classifier

-  in O(n logn) time
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Reviewing Influential Samples

● Influence reveals which data points have greatest impact on the model.

● Correcting a mislabeled datapoint with high influence can boost model 
accuracy more than correcting a mislabeled datapoint with low influence
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Reviewing Influential Samples

● Influence reveals which datapoints have greatest impact on the model.

● Correcting a mislabeled datapoint with high influence can boost model 
accuracy more than correcting a mislabeled datapoint with low influence

● Finding mislabeled data may be hard sorting only by influence instead of 
using confident learning as well


